EXECUTABLE BEHAVIOR MODEL

USING MATLAB SIMULINK

Plant Model Simplified Relationships

CLOSED LOOP SIMULATION

Purpos

- Gain System Understanding:
- Uncover Requirement Deficiencies:
 - . Completeness, Ambiguity
- Uncover Design Impacts:
 - Data Consistency, Control Flow, Testability
- Uncover Undesired Behavior:
 - Expand Developer formal testing.
 - Determine Conflicting & Unreachable States.
 - Determine Failure Scenarios.
 - Ensure system can handle multiple errors.
 - . Verify long-term system operation.

BENEFITS & LIMITATIONS

Benefits

UNIT TESTING

- Low Cost (4-5hr/requirement).
- . Captures Analysis and Understanding.
- . Allows analysis of complex behavior interactions.

Limitations

- Subject Matter Expert Required.
- Does not replace traditional IV&V methods.
- Model is hardware and language independent.
- Model Fidelity tightly coupled with cost.
- . Method proven on smaller systems (~200 Requirements)

ISSUES **Issues - Ambiguous/Incorrect Requirements**

Requirement does not contain enough information for analyst to uirement contains reference to wrong data item.

High Severity Issue - Incomplete Requirement

Motor Remains Active After System Shutdown.

Issue - Conflicting Requirement

Stopping System after detecting any severe or hazardous condition in all modes conflicts with the requirement to transition the system to a Maintenance Mode for any error detected in Initialized Mode.